

Oigear

Trouble Shooting Hydraulic System Failure

MOST COMMON PROBLEMS

- Noise
- Heat
- Low Pressure
- Low Flow
- Instability
- Miscellaneous

NOISE

Oigear

Mechanical

- * Bearings (Prime Mover)
- * Case Drain Restriction (Shoes Lifting)

Other Type's of Noise

- * Air in Oil (Higher Pitch Noise)
 - * Return Lines Need to be Below Oil Level
 - * Reservoir Needs Proper Baffling
 - * Inlet Piping/Hose Connections
- * Cavitation
 - * Inlet Strainer Plugged
 - * Reservoir Breather Plugged
 - * Suction Hose Lining Loose

TRACKING DOWN THE NOISE

Bearing Noise

- * Stays Constant with RPM
- * Feel for Excessive Heat or Vibration

Shoe Lift

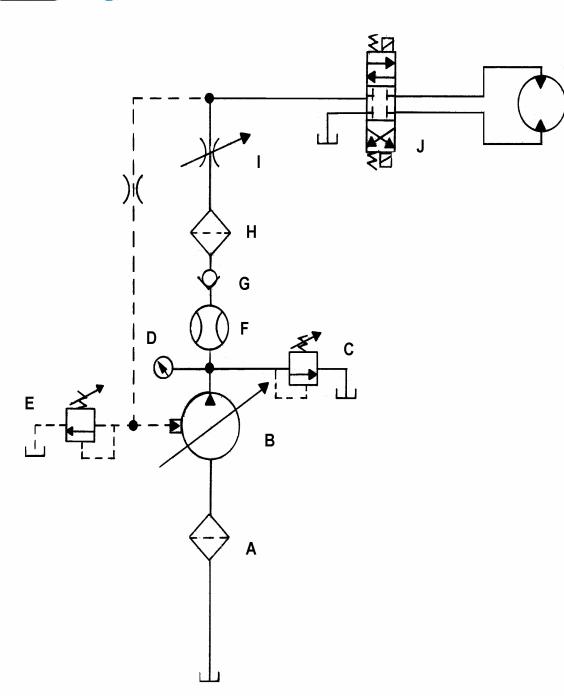
- * Constant Machine Gun Noise
- * Typically Worse at Full Stroke

•Air in Oil

- * Visual
- * Grease All Inlet Piping

Cavitation

- * Pump Valve Plate Hotter Than Pump Case
- * Louder When Pump Strokes


HEAT - WHERE IT COMES FROM

- Case Drain Temperature
 - * A New Pump Not Broken-In is About 30 Degress F Delta T Inlet to Case Per 1000 PSI
 - * A Broken-In Unit is About 15 Degress Delta T Inlet to Case Per 1000 PSI
- Blowing a Relief Valve
 - * Relief Valve Setting Below Pump Compensator
 - * Relief Valve Stuck Open
- Directional Valve Worn or Stuck open
- Leakage Past Cylinder Seals, By-Pass Leakage on Motor's
- Low Fluid Level in Reservoir
- Cavitation & Aeration Occurring

PLACES THAT CREATE HEAT

Oigear

A: Fluid Level Low or Strainer Plugged, Cavitation

B: Pump Generates Heat Due to Pressure Drop and Break-In

C: Relief Valve Stuck Open or Set Below Compensator (E)

F,G,H,I:

Pressure Drop Across
Components

J: Directional Valve or Motor By-Passing

LOW PRESSURE

- Is Pump Compensated ?
 - * Use Max Stop (SN) to Determine This
- Is There Enough Flow to Meet Demand?
- If Horsepower Limited, Is Horsepower Setting to Low?
- Where is the Gauge Placement ?
 - * Must be at Pump Outlet Before Components
 - * Be Sure it's a Good Gauge
- Is Pump Cavitating ?

LOW PRESSURE - IF PUMP IS COMPENSATED

- Check Pilot Supply Orifice (PVG, PVK)
- Check Bleed Orifice (PVW)
- Make Sure that Load Sense Line is not in Stand-By (Vented) Condition
- Horsepower Limiter Could be Limiting Max Flow
- Worn Saddle Bearing Could be Limiting Pumps Output Flow

Innovative Fluid Power

LOW PRESSURE - IF PUMP IS AT FULL STROKE

Olgear

- Is Relief Valve Blowing?
- Is Directional Valve By Passing?
- Is Cylinder or Motor Leaking?
- Is Pump Cavitating ?
- Is There a Cracked Manifold?
- Has Pump Failed ?
 - * Check Case Drain Leakage

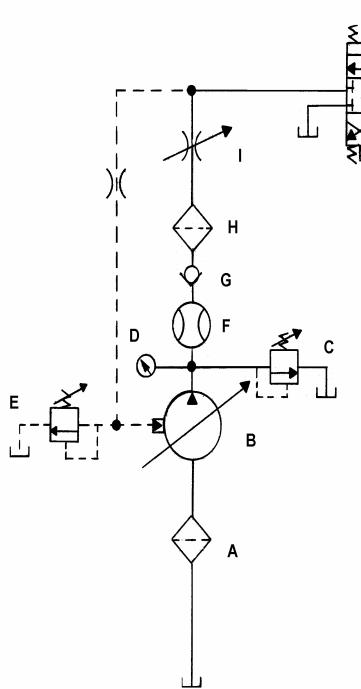
LOW PRESSURE

Olgear

* Inlet Restricted, Low Fluid
Level

B: Control Orifice Blocked

C: Relief Set Below Compensator


D: Gauge Placement, Must be Before
Other Components

E: Remote Pressure Control

F,G,I: Component Pressure Drop,
Load Sense

J: Leaking Valve

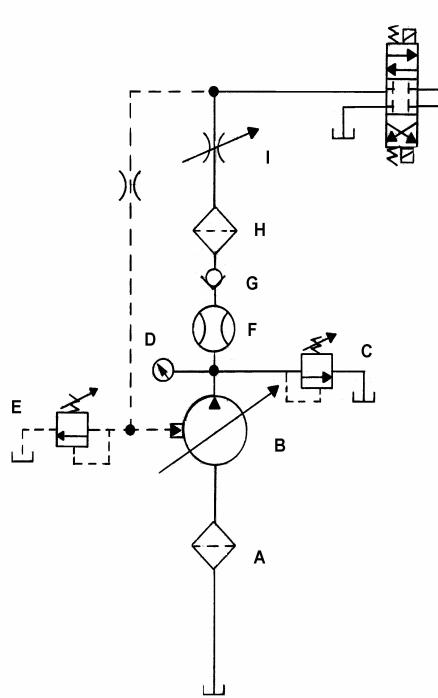
I: Not Enough Load Innovative Fluid Power

LOW FLOW

- Improper Load Sense Setting
- To Low of Horsepower Setting
- Saddle Bearings Worn
- Relief Valve Blowing
- Valves, Cylinder or Motor Leaking
- Max. Volume Stop Not Adjusted Correctly
- Flow Meter Placement
- Inlet Restriction
- Excessive Case Slip

LOW FLOW

Oigear


B: Horsepower Limiter Set Too Low, Excesive Case Slip, Worn Saddle Bearings

C: Relief Valve Leaking

F: Flow Meter Placement

F,G,H,I: Improper Load Sense Setting, System Components Pressure Drop

J: Leaking Valve, Motor By-Passing

Innovative Fluid Power

INSTABILITY

- Pressure Compensated Valves With Load Sense Pump
 - * Make Sure that Delta P Setting of Valve is Different than Pump
- Air in System
- Add Bleed Orifice Flow to CONTROL
- Line Length
 - * Certain Line Length can Produce Half Waves & Full Waves
- Relief Valve Setting to Close to Compensator Setting

COMMON COMPLAINTS

Olegar

- My Pump Trips Out Electric Motor on Start Up
 - *Pump Draws Full HP at Full Stroke at Full Pressure on Start-UP
 - * Use Soft Start or Open Center Valve
- Shaft Seal Leaks
 - * Check Alligement, 'C' Faces Can be Wrong
 - * Make Sure Coupling Halves don't Touch
 - * Case Drain Restrictions
- Pump Will Not Lower Pressure
 - * Check Gauge Before Check Valve
- Pump Draws to Much Horsepower
 - * Under What Condition ?
 - * Pump Could be Half Compensated
 - * Break-In

- Pump Will Not Compensate
 - * Valve Plate on Upside Down
 - * Pump Turning Wrong Rotation
- Pump Looses Prime
 - Don't Fix Pump Less Than 1/4 Stroke
- Can't Get to Pressure With My HP Limiter
 - Don't Go Below 1/3 Max Output HP of Pump

THINGS TO KEEP IN MIND

- Don't Assume Anything
- Consider the Source
- Start with the Obvious
- Isolate Components
- Ask a Lot of Questions Even if They May be Insulting
- Take it One Step at a Time
- Change One Thing at a Time

