

FAILURE ANALYSIS A Guide to Analyzing Axial Piston Pump Failures

Oilgear Company Milwaukee, USA

Innovative Fluid Power

80-776, Rev. 4/05

Typical Failure Modes

- Contamination
- Fluid Issue
- Over Pressurization
- Improper Inlet Condition
- Case To Inlet Differential
- Miscellaneous

CONTAMINATION 10 Micron,Beta 10 of 4 or Better ISO Contamination Grade of 21/19/16

- PISTON SEIZED IN BORE, PULLS SHOE OFF
- PISTONS SHOW FINE SCRATCHES, DULL FINISH
- EXCESSIVE WEAR ON SWASHBLOCK FACE, SHOE FACE AND VALVE PLATE FACE
- EXCESSIVE WEAR ON SADDLE BEARINGS
- HYDRO-DYNAMIC BEARING WORN
- CONTROL UNSTABLE: PISTON STICKING, COMPENSATOR SPOOL STUCK OR WORN, ORIFICE IN CONTROL PISTON PLUGGED

PISTON THAT SEIZED IN BORE

Note Metal Transfer

Innovative Fluid Power

VERTICAL SCRATCHES: Official of Contamination

DULL AND SCRATCHY FINISH

Normal Appearance: A Mirror Finish

Abnormal Appearance: A Steel Wool Look

Innovative Fluid Power

Oigear

SHOE WEAR PLATE SHOWING SIGNS OF WEAR DUE TO DIRT

Scratchy Uneven Wear

COMMERCI

IPMENTA

Fluid Issue

Viscosity too Low, Operating Temperature too High, Not a Hydraulic Fluid, Fluid Breaking Down

- PISTON SEIZED IN BORE, PULLS PISTON SHOE
- SHOE FACES AND OR VALVE PLATE FACE SMEARED
- BALL WORN THROUGH SHOE RETAINER
- SHAFT SEAL LEAKS
- CAVITATION, AIR ENTRAINMENT
- EXCESSIVE SADDLE BEARING WEAR

VALVE PLATE RUN **ON A BAD FLUID**

Note the Smeared Running Surface

OIGEAGE WORN FULCRUM BALL

> Typical Failure on Low Lubricity Fluid

Oigear WORN SADDLE BEARING

Note the Material has Delaminated

OVER PRESSURIZATION/SPIKES Spike Relief Always Recommended

- Excessive swashblock face, cylinder to valve plate wear
- Pistons broken at necks
- Broken shaft where cylinder rides
- Broken tail shaft (dual)
- Control pin broken
- Cylinder cracked between kidneys
- Control O-ring, gasket failure (PVW)

Cracks Would Appear Between Kidneys

TORSIONAL FATIGUE

Note Cone Shaped Failure

BENDING FATIGUE FAILURE

Note Straight Break

Cibear IMPROPER INLET CONDITIONS Suction Strainer not Recommended

- CAVITATION ON VALVE PLATE FACE
- NOISE (MARBLE SOUND)

CAVITATION ON COMPRESSION BRIDGE

F16303

249 hrs

Innovative Fluid Power

Oigear

Rapic

CASE TO INLET DIFFERENTIAL

- In General Differential Cannot Exceed 10 PSI
 - SHOE EDGES ROUNDED
 - SHOES LOOSE ON BALLS
 - SWASHBLOCK WEAR, HALF MOON SHAPE
 - EXCESSIVE WEAR ON BACK OF SHOE FLANGES
 - SEAL RETAINER BENT

TROUBLE !!!!!

STAGES OF DAMAGE DUE TO SHOE LIFT

Oigear

3rd Stage 2nd Stage 1st Stage

THE FINAL STAGE OF SHOE LIFT

Oigear

HALF MOON SHAPED MARKS

A Sure Sign of Shoe Lift

ROLLED SHOES: THE TELL TALE OF SHOE LIFT

Oigear WEAR ON SHOE RETAINER FROM **SHOE** FLANGES

BENT SEAL RETAINER

MISCELLANEOUS

- INPUT SHAFT BROKEN
 - MISALIGNMENT
 - TORQUE REVERSAL
- CONTROL INSTABILITY
 - AIR
 - INCREASE CONTROL PISTON ORIFICE
- PUMP VIBRATES
 - MISALIGNMENT
 - COUPLING HALF'S TOUCHING

HELPFUL HINTS FOR ANALYZING BASKET CASES

- The last piece to fail will have the least amount of damage
- Try to piece together the broken parts. This may seem like a waste of time but many times you will observe things which can help you determine the original cause of failure.

- Get the history of events:
 - What recently changed ?
 - What was going on just prior to failure ?
 - How long was pump run ?
 - Talk to the operators

KEYS TO FAILURE ANALYSIS

- Don't go into a customers problem with a preconceived idea about the cause
- Don't assume anything, verify everything
- Don't overlook the obvious

Innovative Fluid Power